
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009 
 

 

248

Manuscript received January 5, 2009 

Manuscript revised January 20, 2009 

Do-It-Yourself Guide to Cell Phone Malware 

William R. Mahoney and Craig A. Pokorny, 
  

University of Nebraska at Omaha, Omaha Nebraska USA 
 

 
Summary 
The authors present recent research they have conducted to 
determine the simplicity of constructing malicious code for cell 
phones. The results are quite surprising, due to the straight-
forwardness of the programming interface and the availability of 
tools. Our paper recounts the results of a simplistic search for 
off-the-shelf code which can be utilized for the creation of 
malicious software for cell phones. Our search yielded a self-
replicating phone virus which we simulated in a contained 
environment.  
 
Key words: 
Cell phone, malware, outlook, contact propagation. 

1. Introduction 

With the advent of web-enabled cell telephones, handling 
email, web pages, and rich content, there is a definite 
potential for misuse. This has been an emerging problem 
for some time; in fact the first cell phone hacker references 
appeared over 20 years ago[1]. As cell phones subsume 
additional capabilities and are used by an increasing 
number of people, the possibilities for a cell phone virus 
or other malware impacting the global economy is getting 
larger. It is estimated that fully one quarter of the 
inhabitants of the planet currently use mobile phones[2]; 
in Europe there are currently more cell phones than 
people[3]. And cell phone viruses such as Phage and 
Liberty Crack were already appearing back in 2000[4,5]. 
The use of smart phones, which are the aim of our study 
and which incorporate email and web browsing, was 
increasing at a rate of 156% in 2007 [6]. 

Over the course of the development of the internet, 
meanwhile, simple tools for hackers have become 
available and so-called “script kiddies” use these easy 
tools to attack web servers. The knowledge required is not 
extensive.  Without a tremendous amount of information 
concerning the actual technical aspects of the attack, a 
“script kiddy” can download the available software and 
start right in as a nefarious user. Is the same now true for 
cell phone usage? Our research encompassed a simple 
goal: determine what tools are openly available for some 
type of cell phone attack, download the necessary items, 
verify that they can be used in a bad manner, and report on 
the results. This paper represents the last of these aims. 

Our research was thus to create a cell phone virus such as 
Cabir[7] – a virus that does no harm other than self-
replicate, and in the process determine whether the tools 
and skills are readily available and simple.  

In section two of the paper we present a few of the 
techniques used for data delivery to cell phones, including 
brief overviews of SMS, MMS, and email applications 
typical for currently existing cell phones. Section three 
describes the tools we located and used for the project, and 
the following section describes the effort required to create 
a “cruel” application. Our conclusions are in section five. 

2. Background 

Although it is normal to think of cell phones simply as 
phones, they generally have other communications 
methods available which are more easily utilized for 
delivering malware. These include the SMS system, MMS, 
e-Mail, and others.  These methods may or may not be 
capable of transmitting a payload containing the 
troublesome software.  

Cell phone manufacturers and providers are gradually 
becoming aware that these techniques can be used for 
malicious intent. A 2004 document by Microsoft[8] sated 
that “Although Microsoft Windows Mobile-based devices 
have yet to become a significant target for malicious code, 
one may argue that it is only a matter of time before such 
threats occur. Also, even if the devices themselves are not 
affected by such code, when they connect to a network 
they can serve as transport mechanisms for passing 
destructive software on to other computing systems.” 
Presumably the normal “transport mechanisms” such as 
SMS, MMS, email, etc. are used for this “destructive 
software” 

2.1 Available Transport Mechanisms 

The Short Message Service, popularly referred to as 
“texting”, allows one to send a message of up to 160 (7-
bit) bytes of message content to mobile devices, including 
cell phones, Personal Digital Assistants (PDAs), and smart 
phones. The SMS system is similar to paging systems used 
prior to the popularization of cell technology. A key 
difference is that the SMS messages are queued at the 
server until the cell phone is within range and powered on. 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009 
 

 

249

It is not necessary to be ready to receive the message from 
the cellular provider at the moment that it is sent. SMS 
payloads can also be sent to the destination phone from 
web applications, instant messaging clients, Voice over IP 
services, and other services including email[9]. Because of 
the short nature of the message it is probably difficult to 
use SMS for the delivery of malware. 

Contrasting with SMS is the Multimedia Messaging 
Service, or MMS. MMS is a variation of SMS which is 
used specifically to get past the length restriction of SMS 
and thus deliver rich content. This content can include 
photos, videos, and web content in general. The encoding 
scheme is similar to Multipurpose Internet Mail 
Extensions (MIME) and the contents are saved as a web 
page on a server. An SMS “control message” is then sent 
to the recipient; this message contains the URL of the 
content, and this triggers the receiver's web browser to 
open and receive the content from the embedded URL. In 
this way, the contents of the message can be of arbitrary 
length. 

Obviously the restrictions imposed by size within 
SMS are not present in MMS. Also the contents of the 
payload coming from the web server can just as easily 
hold software as well as photos. Thus, MMS is a candidate 
for malware. 

2.2 The Rise of e-Mail 

Ever since the internet became a household norm, e-mail 
has been everywhere.  E-mail was originally the best way 
to propagate a virus, and is still, unfortunately, used in this 
manner.  With the rise of cell phones along with the 
availability of internet on cell phones, the ability to check 
e-mail via cell phone became another norm. 

On the popular Microsoft Windows platform the 
default email client of Outlook Express is immensely 
popular, despite it being the default target for malware. 
The Outlook client also runs on a variety of embedded 
applications on top of what once was called Windows CE 
but is now referred to as Windows Mobile. Since the 
particular cell phone we were working with supported 
Microsoft Windows Mobile[10] and the particular phone 
also contained Outlook, we specifically focused on email 
malware delivery. Note that this is not currently the most 
popular cell phone platform; “in the third quarter of 2008, 
Nokia had 47 percent worldwide smart phone market 
share; Apple, 17 percent; RIM 15 percent and Microsoft 
Windows Mobile phones, 14 percent”[11]. However it 
was favored simply because one of the authors owns a 
Microsoft Mobile phone, and the previously mentioned 
propensity for Outlook security issues. 

3. Locating and Utilizing Software Tools 

Since the cell phone we planned to attack was Windows 
Mobile based, we initially made a determination as to how 
to go about creating software for this platform. Obviously 
the place to start is the Microsoft Windows Mobile web 
site, which indicated that application development for 
these phones is generally accomplished using Visual 
Studio. We simply downloaded a copy of Visual Studio 
via the Microsoft Developer Network (MSDN) Academic 
Alliance[12].  One can easily find a trial version of Visual 
Studio from the MSDN without any login. Also necessary 
is the Windows Mobile 6 Cell Phone Emulator package 
and the pertinent software development kit (SDK) for this 
emulator. This SDK can be found on the Microsoft 
download center [13]. 

We used the HTC Mogul[14] as the sample phone for 
development purposes, as one of us happened to own this 
particular unit. A quick search of the internet also 
indicated the availability of a considerable amount of open 
source knowledge and software for this platform, which 
also influenced our decision. 

After installing Visual Studio, we brought up our 
source code (described next), which is based on C#.  We 
chose this language as it is near enough to C and C++, and 
that most programmers can do basic manipulations of the 
source code.  After writing sample software and 
manipulating the code, one can subsequently test it on the 
cell phone emulator.  This is done by running the cellular 
emulator located in the Windows Mobile 6 SDK package, 
resetting the connection, and then starting the phone 
emulator in the Visual Studio environment.  The only 
configuration issued we encountered were setting the 
Peripherals to the correct communications ports; in our 
case Serial port 0 needs to be set to COM4, as in Figure 1: 

 

 
Fig. 1 Windows Mobile 6 SDK Configuration for Phone Emulator. 
 
In Visual Studio, we debug and deploy the program 

into the Windows Mobile 6 Professional Emulator. The 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009 
 

 

250

end result is a cell phone within a window (Figure 2), 
which accurately mimics the real hand held unit. 

Even the simplest malware needs one aspect in order to 
be malicious: the ability to propagate. Based on this 
requirement we searched for open source code which 
would allow us to view the contents of the address book 
on the phone. Once we understand the methods for 
accessing this data, we can replicate our malware via SMS 
messages, email messages, or some other means. 
Obtaining this source and adding it to our application is as 
simple as cut and paste once you locate the necessary 
code; we discovered what we needed at a site managed by 
Craft[15]. The original use for this code was simply to 
broadcast an SMS message to different contact groups.  Of 
course in order to do this it must have access to all of the 
contacts listed in the phone, which was exactly the 
software we wanted. We obtained this source, integrated it 
into our application by having it automatically pull up all 
contacts and send an SMS message.  Using the phone 
emulator we verified that it did obtain the correct list and 
could send the message. 

 

 
Fig. 2 Phone Emulator Running in Development Kit. 

4. Our Malicious Application 

We next created our malicious program and included the 
open source contact list software. The actual application 
creates an internal SMS message instead of the original 
version, which sent a user generated message to groups of 
contacts. In our version, when the software is launched on 
the phone, it sends the generated message to everyone in 
the contact list and then immediately exits. Because of this 
behavior the program window never actually becomes 

visible on the phone at all, possibly causing the phone user 
to run the application again.  

There are different approaches to propagating the 
malware via the SMS message. Presumably one can create 
a control message which causes the recipient cell phone to 
automatically launch the browser application, for example. 
We instead selected a method with is low-tech and simple, 
but likely would be almost as effective: the content of the 
message is designed to deceive the recipient in some way 
so that they will install the program. Thus, a simple text 
message: “Hi! Hey, I located a nice phone add-on at 
www.malicious.com/...”. The receiver of the message 
knows the sender, presumably, and as a result often times 
will also simply trust the content. They click the link, 
select “download”, and run the application. This then 
propagates the malware to their contact list. 

Our idea is that a malicious virus would then exploit 
the security loop holes in Windows.  There are a wide 
range of possibilities.  A simple attack could delete 
necessary files to run the operating system, and thus crash 
the phone.  This would cause many phones to need service 
at the local phone store. 

Of course we did not actually launch the application in 
the “real world”. Rather we tested it on the emulation 
package, using various contact lists and web links, 
including the web link necessary to cause the propagation 
as outlined above. In all cases the message came back to 
the emulator when the phone itself was in the contact list, 
and did not come back when the phone itself was not in 
the contact list. Shown in figure 3 below are several 
messages of this type as received by the phone emulator. 
We have, of course, replaced the message with a simple 
link to a well known URL instead of our message:  

 

 
Fig. 3 Incoming Messages on Phone Emulator. 

 
In this manner we determined that the software was 

successfully propagating the message, and that following 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009 
 

 

251

the link resulted in another download of the malicious 
software.  

5. Conclusions 

We were quite surprised with the ease that nefarious 
software can be created using off-the-shelf tools.  

First and foremost, the necessary software tools for 
creating phone applications are easily available and often 
free for a trial period. As stated above, Visual Studio can 
be downloaded as a trial version, and the Windows Mobile 
6 SDK is currently free as well.   

Secondly, the propagation problem is easily solved by 
the available facility within the SMS messages to fool the 
recipient into following the embedded link. Obviously if 
one were to include a SMS control message instead of a 
simple (manually clickable) link, this would be a better 
route for reproduction of the malware; however our simple 
approach works as well and supports our suspicions about 
the simplicity and availability of the software creation.  

Thirdly, locating the off-the-shelf software was very 
simple via searching the internet with obvious terms. 
Although the software was not targeted per-se with 
hackers in mind, a very small amount of “reading between 
the lines” is necessary in order to understand how the 
available software can be utilized for other exploits.  

Finally, an experienced software engineering team, 
working into the wee hours of the night, is exactly the 
opposite of what is necessary. A reasonable background in 
computer programming, the ability to read the “help” 
system within the software tools, and a knowledge of how 
to fix the odd syntax error are sufficient skills for malware 
creation on cell phones. 

Obviously we performed these experiments on a 
certain platform because of its availability and because we 
knew that the email client would have plenty of associated 
free software. However, our future work includes looking 
into some of the newer technologies, in particular 
applications which run on more popular phones such as 
the iPhone. Also future work includes what we call a 
“medium scale test” where a small group of actual phones, 
instead of the emulator, are used to test the malware in a 
larger, but still controlled, environment.  

We predict that the “script kiddies” of the cell phone 
world are right around the corner.  
 
 
References 
[1] Bruce Alston, “Cellular Telephones – How They Work”, 

2600 Magazine, December 1986. 
[2] Steven Furnell, “Handheld hazards: The rise of malware on 

mobile devices”, Computer Fraud & Security, Volume 2005, 
Issue 5, May 2005, Pages 4-8. 

[3] “Cell phone popularity growing in Europe”  
http://www.usatoday.com/tech/products/2008-09-25-
518457659_x.htm 

[4] Neal Leavitt, “Malicious Code Moves to Mobile Devices”, 
Computer, vol. 33, no. 12, pp. 16-19, Dec., 2000. 

[5] Neal Leavitt, “Mobile Phones: The Next Frontier for 
Hackers?” Computer, April 2005, 
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=14326
39&isnumber=30759 

[6] Jerry Cheng1, Starsky H.Y. Wong1, Hao Yang and Songwu 
Lu, “SmartSiren: Virus Detection and Alert for 
Smartphones”  
http://www.usenix.org/events/mobisys07/full_papers/p258.p
df 

[7] 29A lab: http://vx.netlux.org/29a/ however this web site is 
currently “retiring”. 

[8] Douglas Dedo, “Windows Mobile-Based Devices and 
Security: Protecting Sensitive Business Information” 
http://download.microsoft.com/download/4/7/c/47c9d8ec-
94d4-472b-887d-
4a9ccf194160/6.%20WM_Security_Final_print.pdf 

[9] Dylan F. Tweney, “Everything you need to know about text 
messaging with your mobile phone”, 
http://www.sms411.net/ 

[10] http://www.microsoft.com/windowsmobile/en-
us/default.mspx  

[11] Mary-Jo Foley, “Microsoft starts rolling out IE 6 for 
Windows Mobile”, ZDNet, November 12th, 2008 
http://blogs.zdnet.com/microsoft/?p=1711  

[12] http://msdn.microsoft.com/en-us/academic/default.aspx 
[13] http://www.microsoft.com/downloads/details.aspx?familyid

=06111A3A-A651-4745-88EF-
3D48091A390B&displaylang=en 

[14] Mogul™ by HTC (Sprint) at 
http://www.htc.com/us/faq_detail.aspx?p_id=75&act=um 

[15] Chris Craft, “30 Days of .NET [Windows Mobile 
Applications] - Day 14: Mobile SMS Contact” at 
http://www.cjcraft.com/blog/2008/06/15/30DaysOfNETWin
dowsMobileApplicationsDay14MobileSMSContact.aspx 

 
 
 

William R. Mahoney received his B.A. 
and B.S. degrees from Southern Illinois 
University, and his M.A. and Ph.D. 
degrees from the University of Nebraska.  
He is an Assistant Professor and 
Graduate Faculty at the University of 
Nebraska at Omaha Peter Kiewit 
Institute. His primary research interests 
include language compilers, hardware 
and instruction set design, and code 

generation and optimization. Prior to the Kiewit Institute Dr. 
Mahoney worked for 20+ years in the computer design industry, 
specifically in the areas of embedded computing and real-time 
operating systems.  During this time he was also on the part time 
faculty of the University of Nebraska at Omaha.  His outside 
interests include bicycling, photography, and more bicycling. 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009 
 

 

252

 
Craig A.  Pokorny is currently a 
student at the University of Nebraska at 
Omaha. He will be graduating with a 
Bachelor’s Degree in Computer Science.  
Craig has financed and enhanced his 
education via his employer; he is a 
Computer Diagnostic Specialist for a 
local technology reselling firm. He plans 
to pursue a career in computers and 
business management.  He is an active 

wrestling coach, and his other outside interests include 
photography, and European car modification. 


